LES ORRES 10-11 May 2021

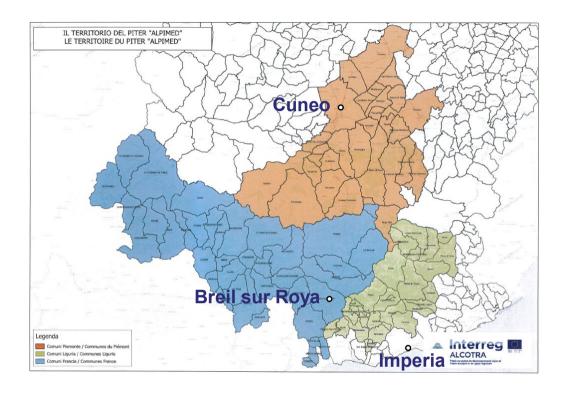
Smart Mountain for tomorrow

ENERGETIC AND CLIMATE IMPACTS OF ALPINE SKI TRACKS

Data and proposals from the PITER Alpimed INNOV project

THE PITER ALPIMED PROJECT

Basic info:

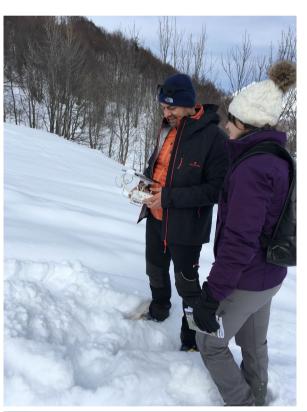

- Involving CN, IM (Italy) and Dept.06 (France)
- Funded by the EU INTERREG Alcotra

Objectives:

- Strengthening innovation in the Mediterranean Alps
- Applying innovations in living labs:
 - Energy saving in ski resorts
 - Water saving in agriculture

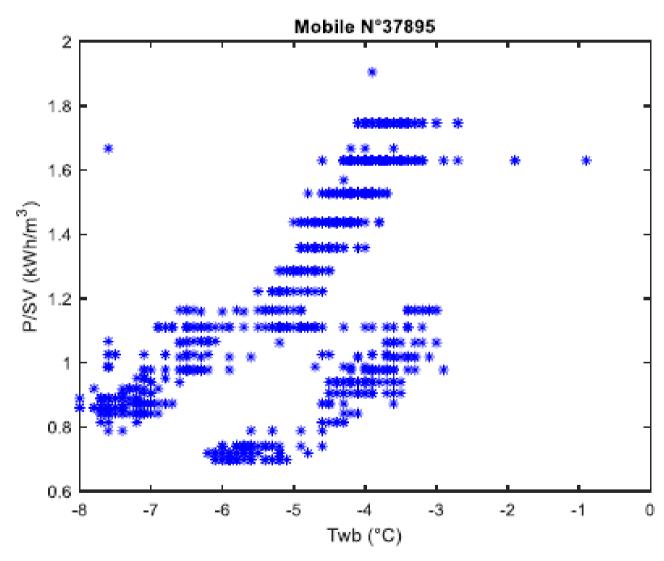
• Figures:

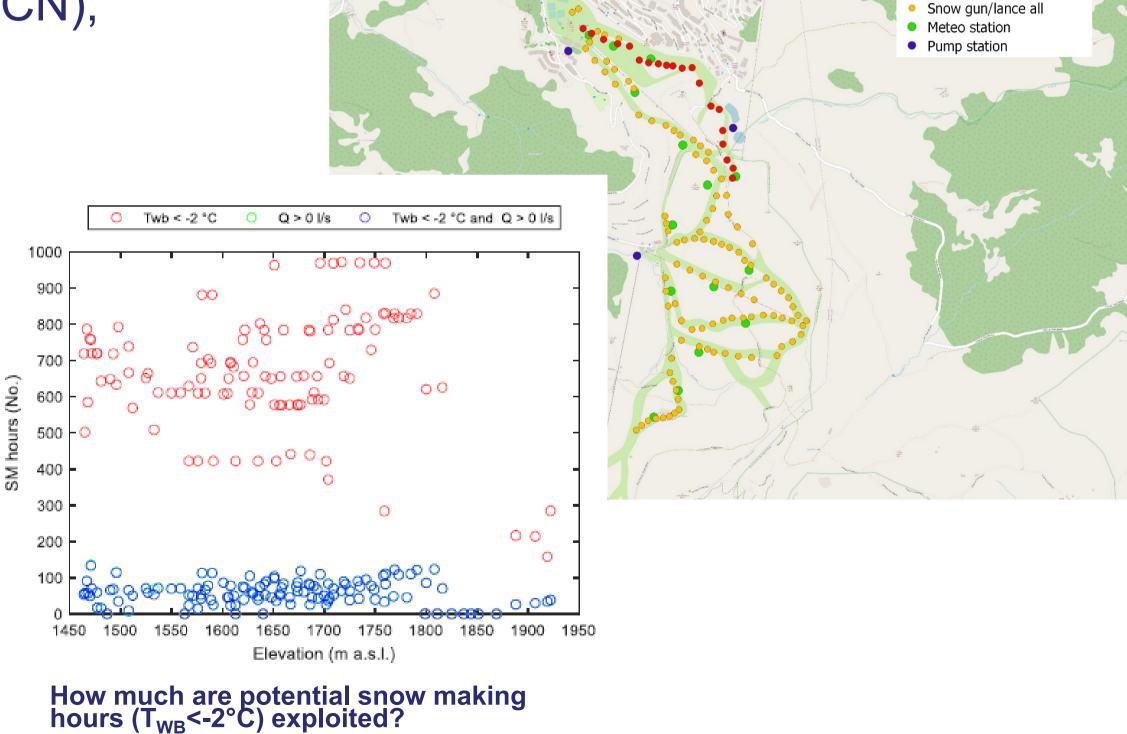
- 9 partners + 10 collaborating institutions
- 3+1 years (10/2018-10/2022)
- Budget 1.764 M€



INITIATIVES OF PITER ALPIMED (1/2)

 Drone-based measure of snow cover thickness




- Monitoring of energy and water consumption of snow guns:
 - Processing of recorded data
 - Development/testing of dataloggers

INITIATIVES OF PITER ALPIMED (2/2)

 Monitoring data of snow making system in Prato Nevoso (CN), winter 2019-20

Correlation between wet bulb temperatures and the electrical demand per cubic meter of snow

Snow qun/lance Prel piste

SKI TRACKS: ENERGY DEMAND ITEMS

Ropeways:

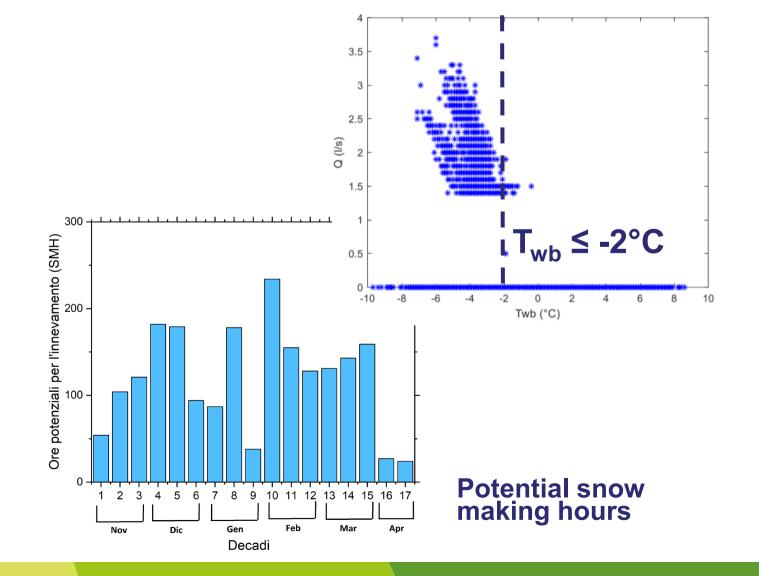
- Elevation gain
- Chair / cabin size
- Speed
- Efficiency

Snow making:

- Snow quality requirements
- Temperature and RH (→ WB temperature)
- Efficiency

- Track quality requirements
- Slope
- Snow cover thickness
- Driver skills

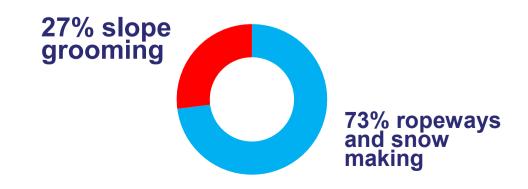
SKI TRACKS: ENERGY DEMAND (1/2)


Power required

 $P \sim P0 + aL + b\Delta h$, e.g. 4-seater, b~0.81 kW/m (N=23)

Skilift b~0.16 kW/m (N=32)

- Power: 20 25 kW/gun
- Flow rate $\propto T_{WB}$
- 1 m³ water~2.5 m³ snow
- 1 $l/s \sim 9 \text{ m}^3/\text{h snow}$



SKI TRACKS: ENERGY DEMAND (2/2)

• Carbon footprint of a skiing day? $(RW + SM) \cdot EF_{el} + SG \cdot EF_{fuel}$

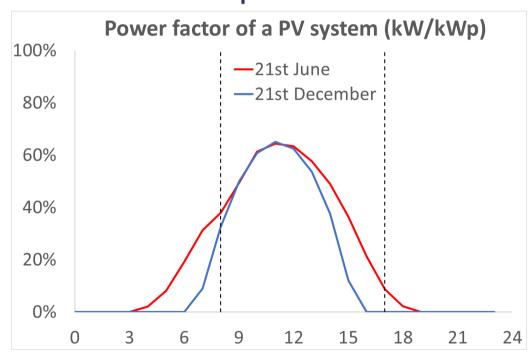
N_{skiers}

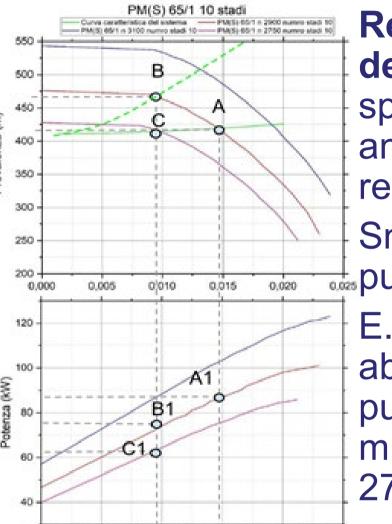
- Ropeways (+ snow making): 0.37 –
 1.3 MWh/y per meter of elevation gain
- Fuel consumption: 1892 5405 l/km
- Carbon footprint of a skiing day:
 3.61 11.62 kgCO₂eq

	Resort 1	Resort 2	Resort 3	Resort 4	Resort 5
Overall track length (km)	80	150	50	50	152
N° of ropeways	14	58	13	12	38
N° of skiers	199 890	1 203 741	128 537	481 000	455 000
Skiers / km track	2 499	8 025	2 571	9 620	2 993
Overall ropeway elevation gain (m)	4 491	19 017	2 825	4 534	11 075
Fuel consumption (I/y)	241 188	333 554	94 641	270 270	326 568
Electricity consumption (MWh/y)	3 426	7 024	1 542	5 878	5 045
Fuel consumption / km track	3 014	2 223	1 892	5 405	2 148
Electricity demand / meter of elevation gain	0,76	0,37	0,55	1,30	0,46
KgCO ₂ /skier	11,62	3,61	7,85	7,50	7,35

SKI TRACKS: REDUCING THE CARBON

FOOTPRINT


Reducing energy demand with speed regulation based on attendance



source: EURAC https://bit.ly/3etNZk5

Reducing the CF with photovoltaic systems

Opening: 1 Dec-31 Mar h.8-17, 15 Jun – 15 Sep (Fri-Sab-Sun) h. 8-17 →Self-consumption ~ 40%

Reducing energy demand with variable speed pump arrays and optimizing the reservoir locations.

Snow making ~ pumping

E.g. cannon at 6 l/s absorbing 25 kW vs pump at 6 l/s, Δh=300 m, η=65% absorbing 27 kW

Reducing energy demand with hybrid snow grooming machines with downhill energy recovery → 25-30% reduction of fuel consumption

LES ORRES 10-11 May 2021 Smart Mountain for tomorrow

THANK YOU FOR YOUR ATTENTION

and thanks to: Irene Aicardi, Andrea Lingua, Nives Grasso, Paolo Maschio, Costanza Gamberini, Jacopo De Santis, Gabriele Arduino, Marco Galfrè, Daniele Cerato, Federico Zanardini and Technoalpin, LIFT Limone Piemonte, Prato Nevoso

REGION BOURGOGNE FRANCHE COMTE

